
A Grammatical Approach to
Automatic Improvisation

Robert M. Keller, David R. Morrison
Harvey Mudd College

Claremont, California, USA

keller@hmc.edu, dmorrison@hmc.edu

Abstract— We describe an approach to the automatic
generation of convincing jazz melodies using probabilistic
grammars. Uses of this approach include a software tool for
assisting a soloist in the creation of a jazz solo over chord
progressions. The method also shows promise as a means of
automatically improvising complete solos in real-time. Our
approach has been implemented and demonstrated in a free
software tool.

Keywords— jazz, improvisation, educational software,
probabilistic context-free grammar, melody generator.

I. INTRODUCTION

Our group set out to develop a tool for assisting

improvisors in creating jazz solos in the context of given

chord progressions (“changes” in jazz musicians’ parlance

(JMP)). An initial approach involved creating a large

database of existing melodic fragments (“licks” in JMP)

from which the user could choose, to help create melodic

lines or fill gaps in these lines. One problem with this ap-

proach is that there are many different chord progressions,

even when normalized to a given tonal center, which

would thus require an extremely large database. Moreover,

the database needed to be manually created, which was

very labor-intensive, albeit instructive to the creator.

An alternate approach that does not have the above

difficulties is to have the software dynamically generate

novel licks. While this idea has great appeal, it is less

than obvious how to make it work so that the results

sound like convincing jazz solos. Choices of notes that

are largely random, even ones drawn entirely from the

chords, tend not to sound good, especially rhythmically.

Some additional structuring method is required to make

the notes fit together in a manner that will be pleasing to

the ear.

We have developed an approach based on the idea

of a formal grammar, augmented with certain pragmatic

devices, which seems to be largely successful in achieving

our objective of creating good-sounding melodic lines.

The approach has been realized as a feature of a free soft-

ware tool for assisting improvisors in the creation of better

solos. The tool is called Impro-Visor (for “Improvisation

Advisor”) and has been available on the world-wide web

since January 2006 [1]. A preliminary paper describing

our tool was presented in [2].

II. STRUCTURE OF THE PAPER

Having reviewed the background and motivation of

our project, we will briefly review the concept of a

context-free grammar, as it occurs in computer science

and linguistics. Then we show how a grammar can be used

to generate plausible rhythmic and melodic sequences for

jazz. Playable examples will be presented that show the

effectiveness of the approach. Our approach has been

implemented and has been tested in the past year as

part of a broader educational software tool, which proved

beneficial in a jazz improvisation course taught by the first

author and has also been used by various third parties.

III. RELATED WORK

The motivation for our use of grammar was based

primarily on implementation needs. It was only during

writing the final version of this paper that we became

aware of the many references that suggested using gram-

mars in one form or another for various aspects of

music analysis and synthesis. Early work includes that

of Winograd [3], Lindblom and Sundberg [4], Longuet-

Higgins [5] and Roads [6], to name a few. Rader’s work

[7] used probabilistic grammars to generate traditional

melodies. Hughes [8] surveyed the use of grammars for

non-western musics, and Bel and Kippen [9] used them

for patterns in Indian drumming. Please see Roads and

Strawn [10], Cope [11], and McCormack [12] for more

thorough surveys, the latter including use of L-systems

and Markov chains. Recent work of Assayag and Dubnov

[13] demonstrate the use of factor oracles to generate

improvised sequences.

Lerdahl and Jackendoff [14] used a generative gram-

mar theory for music analysis, which is referenced by

Horowitz [15] as an approach to jazz analysis. Steed-

man [16] described the use of a grammar for analyzing

jazz chord progressions, but not melodies, and Johnson-

Laird [17] elaborated on this approach. Earlier work by

Johnson-Laird [18] also suggests using regular grammars

for explaining rhythmic sequences. Despite this large set

of references, we believe that the particular way in which

we employ grammars and the meaning we assign to

the terminal symbols has adequate elements of novelty.

Because we use probabilistic grammars, we mention

Temperley’s recent book [19], which describes wide uses

of probabilistic models for music analysis, including both

pitch and rhythm. The work of Ulrich [20] and, although

it does not use grammars, Grachten [21] seem to share

some of the spirit of our own approach.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

330

Fig. 1. Screen shot of Impro-Visor

Work on jazz melody generation includes Biles’ Gen-

Jam [22] and the work of Papadopoulos and Wiggins

[23], both of which use genetic algorithms, thus re-

quiring a fitness function to perform genetic selection,

and Thom’s BoB [24], which used a statistical learning

approach. Band-in-a-Box [25] is a commercial tool that

will generate choruses without user interaction. Although

effective for non-interactive solo generation, its methods

are proprietary, and appear to rely mostly on a pre-

constructed database of melodic fragments.

IV. BRIEF BACKGROUND ON JAZZ SOLOING

A jazz solo consists of a melody improvised over a

given chord progression. The progression usually consists

of chords chosen to support the original melody of a song,

and is usually somewhat standardized, although chord

substitutions and embellishments are often introduced.

Common practice would be for the group to play the

original tune (called the “head” in JMP), then each soloist

would improvise some number of “choruses” over the

changes, then the group would typically play the head

a final time.

The challenge for the soloist is to have sufficient

creative ideas to be able to play one or more choruses.

Good preparation for this kind of creation entails knowing

the melody and changes, as well as the harmonic under-

pinnings of the changes.

Impro-Visor was designed to assist the soloist, who

may not yet have a strong theory background, in the

process of creating solos. Our intention is to provide this

as a practical end-user tool, not simply a research vehicle,

so we have included niceties such as MIDI-playback for

usability. Fig. 1 provides a screen-shot of Impro-Visor in

action.

V. AUTOMATING MELODY GENERATION

We would like our tool to provide a very large reper-

toire of melodic segments. Our initial approach was to

construct these manually or transcribe them from recorded

sources. Manual construction is enjoyable, and turns

out to be as educational, if not more educational, than

using the segments to construct complete solos. However,

manual construction is also a slow process. It would be

much better if we could automate the generation of these

segments, either on-line while the tool is being used, or

off-line, saving the segments in the vocabulary file in

which such segments currently reside.
On-line generation is somewhat risky. Unless one has

a very reliable algorithm for doing it, the results can be

poor and therefore misleading to the student. Of course

the ear can be used as the ultimate selection device, and

it is easy to backtrack to a different sequence, but the

beginner’s ear is often not sufficiently developed, so it

would be better to have every generated segment sound

good.
Historically, we intended to create a training corpus for

machine learning research. We had originally constructed

a “lick triage” device as part of a software improvisation

assistant tool, from which we learned some things about

the problem, as we now describe. The tool allowed one to

specify (unordered) sets of preferred tones over two-chord

sequences, although the idea could easily be extended

to more chords. The preferred tones are essentially scale

tones and color tones, information that is already available

in a vocabulary. Minimum and maximum duration for

notes were set by the user. When triggered by the user,

the tool generated a random sequence of pitches within

the realm of the parameter settings. The user could then

accept this sequence, or reject it and try another.
One surprise that resulted was that, when we simply

avoided repeated notes and used a uniform duration

of eighth-notes, most of the segments were acceptable

jazz melodies, at a level above 90 percent. When the

duration was not uniform, say a mixture of eighth and

quarter notes, the acceptance rate was not as high, but

still encouraging. Some interesting syncopated melodies

were observed, consistent with the intended use for jazz.

The acceptance rate deteriorated significantly when longer

licks were stipulated, and seemed to suggest that rhythmic

aspects are at least as important as pitch aspects when

characterizing acceptable jazz melodies. Being encour-

aged by the results from fairly simple technology, we set

out to develop a better tool based on grammars, as next

describe.

VI. FORMAL GRAMMARS

While a review of grammars might not be necessary

for the computer scientist or linguist (who can thus skip

this section), their use is less common in music, so we

briefly present the basic concepts here. There are several

categories of grammar, but the type that are perhaps the

most manageable while still serving our purpose are the

context-free grammars, so we restrict ourselves to this

family in the current exposition.
The purpose of a grammar is to generate sequences of

symbols. In our case, the symbols will be interpreted as

rhythmic values and tonal families of notes.
A context-free grammar (CFG) consists of the follow-

ing components:

1) The terminal alphabet is a set of symbols that

directly form the objective sequence. In our case,

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

331

these symbols are a step away from being rendered

as musical notes.

2) The auxiliary alphabet (also called non-terminal
alphabet) is a set of symbols that serve to con-

struct sequences of terminal symbols, but are not

themselves terminal symbols. They are analogous

to scaffolding in building construction.

3) The start symbol is a symbol in the non-terminal

alphabet that is used as the root in generating a

sequence.

4) Productions are rules that create new sequences

by replacing symbols in the old sequence with

sequences of new symbols.

Here is a simple example of a CFG outside of a musical

context. It generates all strings of matched parentheses

1) terminal alphabet: { ’(’, ’)’ }, the set of parenthe-

ses.

2) auxiliary alphabet: { S, T }, a set of two symbols.

3) start symbol: S

4) productions:

• S → ()

• S → (T)

• T → S
• T → TT

Below are some sequences generated by the above

grammar. At each step, an auxiliary symbol in the pre-

vious string that occurs on the left of a production is

replaced with the sequence on the right of the same

production, leaving the other symbols unchanged. Only

strings consisting entirely of terminal symbols are consid-

ered to be in the set of strings generated by the grammar.

• S → ()

• S → (T) → (S) → (())

• S → (T) → (TT) → (ST) → (()T) → (()S) →
(()(T)) → (()(S)) → (()(()))

and so on

VII. GRAMMARS FOR RHYTHMIC SEQUENCES

We use a grammar to generate coherent skeletal rhyth-

mic sequences, then fill those sequences with appropriate

notes. For example, suppose we just want to generate an

arbitrary number of measures of half notes and quarter

notes, with no syncopation. A suitable grammar might

be:

• S → M
• S → MS
• M → HH
• H → h
• H → qq

(In the Impro-Visor tool, the grammar is actually repre-

sented using S-expressions [26]. We present it here in

the form shown for greater readability.) Here the terminal

alphabet is { h, q }, representing half-notes and quarter-

notes respectively. The auxiliary alphabet is { S, M, H }
where S represents a sequence of one or more measures,

M represents a measure, and H represents a half-measure.

Some example derivations are:

• S → M → HH → hH → hh
• S → M → HH → hH → hqq
• S → M → HH → qqH → qqh
• S → MS → HHS → qqHS → qqhS →

qqhHH → qqhqqH → qqhqqqq

To allow syncopation, we would need to add to the

previous set productions that allow a half-note to straddle

the mid-point of a measure and the bar lines, such as in:

• S → HS
• S → qS

In this case, a much richer set of possible sequences

is generated. In particular, every sequence of half and

quarter notes is generated by this grammar. Of course, we

could use terminal symbols that represent rests as well as

notes.

The advantage of a grammar for representing rhythmic

sequences is that a well-constructed grammar can be

used to avoid awkard rhythms, such as a sixteenth-note

followed by a half-note followed by a sixteenth-note then

an eighth-note.

VIII. PROBABILISTIC GRAMMARS

So far, a grammar is completely non-deterministic and

void of any sense of distribution of the types of sequences

generated. By adding a probability to the application of

a production, a semblance of style can be introduced. In

other words, the degree to which a sequence is “main-

stream” can be controlled. Specifically, sequences that are

stylistically on the fringe can be produced infrequently.

In our model, each production is given a weight, with

the intention that when an auxiliary symbol is selected

for replacement, the choice of production is among all

productions with that symbol on the left-hand side, with

productions having heavier weights being used more fre-

quently. These weights are like probabilities, except that

they don’t have to sum to 1. For the user’s convenience,

the program normalizes the weights by dividing each by

the sum of the given weights for that particular left-

hand side to get an actual probability that is used to

parameterize random selection.

As an example, if we wished to generate sequences

that were only occasionally syncopated, we would desig-

nate lower weights for productions that tend to produce

syncopated rhythms.

One further augmentation of the basic grammar idea is

used to control the length of the sequence generated: cer-

tain auxiliary symbols are accompanied by an argument
giving the length of the sequence to be generated. This

argument may be used arithmetically in recursive rules,

as will be seen in the example shortly.

IX. GENERATING MELODIC SEQUENCES

Once we have generated a rhythmic skeleton, we can

provide a tone for each note. In our framework, which

mainly concentrates on jazz at this point in time, we have

a classification of tones according to the operative chord:

1) Chord tones: tones of the current chord.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

332

2) Color tones: complementary tones for the current

chord. These are tones that are not in the chord, but

which are individually sonorous with it. They are

also often called “tensions” in JMP.

3) Approach tones: non-chord tones that make good

transitions to chord-tones or color tones.

4) Other: tones that do not fall into one of the cate-

gories above.

These characterizations are similar to ones used by jazz

players. The corresponding notes, in the context of chords,

provide the tension-release aspect common to professional

jazz solos. We use a distinct symbol for each of the first

three types of tones, and four additional terminals, as

follows:

1) C a chord tone.

2) L a color tone.

3) A an approach tone.

4) H a “helpful” tone, defined to be any of one of the

above.

5) S a scale tone, a member of a scale designated as

being compatible with the chord.

6) X an arbitrary tone.

7) R a rest.

Approach tones currently force the following tone to

be a chord tone, even if its designation is otherwise. The

definitions of chord, color, approach, and scale tones is

given on a per-chord basis in a separate vocabulary spec-

ification. All vocabulary information is user specifiable

as a text file of S-expressions [26]. The later provide a

readable way to communicate structure, in comparison to

alternatives such as XML or proprietary formats.

For example, the grammar might generate a sequence

(A8 L8 S8 C8 H4. S8). Based on the current chord, the

symbols would be replaced with actual pitches, to become

a note sequence, such as (f#+8 g+8 e+8 d+8 b4. g8),

representing the notes shown in the first staff of Fig. 2

(Note: All staves in this paper are treble clef.). Here 8

refers to eighth-note duration, 4. means a dotted quarter-

note duration, and + means to raise the pitch one octave

from its default position, the octave just above middle

C. Although the second note class in the sequence is

specified as a color tone, this is actually over-ridden to

be a chord tone, due to the previous note class being an

approach tone. (This is the current operative convention,

but it could be changed.) The following section elaborates

on the overall process.

X. ADDITIONAL CONSTRAINTS

We allow the user to apply additional constraints to

increase the likelihood that the pitch sequence is melodic.

Although this information could be provided with an

extension of the current grammar notation, this is left for

future exploration. The specific controllable constraints

are as follows:

1) Minimum and maximum pitch values.

2) Minimum and maximum interval between pitches.

3) A probability of using an interval outside the above

specification, i.e. for a “leap”.

Other possible constraints will be considered in the

future.

XI. A SAMPLE GRAMMAR

Here is an example of a grammar that seems to be

very workable for contemporary jazz licks. It is the

current default in our tool. As mentioned earlier, an

added advantage of using a grammar is that the user

can change it to suit, for example, to make the generated

melodies simpler or more complicated. The terminals in

the grammar consist of the note class symbols followed

by a duration value. These representations are chosen to

be natural for the musician, who can also use the same

notation in other parts of the software tool, such as in

accompaniment style specifications. The duration values

are designated as follows:

• 1 a whole-note

• 2 a half-note

• 4 a quarter-note

• 4. a dotted quarter-note

• 8 an eighth-note

• 16 a sixteenth-note

• 4/3 a quarter-note triplet

• 8/3 an eighth-note triplet

• 16/3 a sixteenth-note triplet

For example A8/3 designates an approach tone with a

duration of a eighth note triplet. Note that we did not

include dotted eighth-notes and sixteenth-notes, as they

don’t occur frequently enough in jazz. A pair of eighth

notes, however, is usually “swung”, that is articulated so

that the note on the beat is about 2/3 of a beat long,

and the following note about 1/3 of a beat long. This

swing ratio is implied from the ambient style, rather than

being shown in the grammar explicitly. Hence the same

grammar works well for both swing tunes and for latin

tunes, where the eighth notes are more nearly equal. If

ordinary dotting is desired, a dot after a terminal symbol

denotes lengthening the normal value by 1/2.

The terminal set of the example grammar, where each

item separated by commas counts as a single symbol, is:

X2, X4, X4., X8, X16, X4/3, X8/3,

H2, H4, H4., H8, H16, H4/3, H8/3,

A4, A8, A16, A8/3, C2, C4, C8,

L4, L8, R4, R8, S4, S8

Auxiliary symbos, such as P below, can be endowed

with parameters, to permit generation of melodies to fit a

certain number of beats. A parameter of N beats on the

left-hand side of a production is sub-divided using arith-

metic on the right-hand side to enable a coarse skeletal

layout, which is further refined with other productions.

The first group of productions below are parameterized.

With P (N) as the start symbol, where N is an argument

indicating the length of the overall sequence in beats,

the productions, with their assigned weights in square

brackets, are (where the Q′s are auxiliary symbols that

expand into a sequence occupying the indicated number

of beats):

1) P (0) → empty [1]

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

333

2) P (1) → Q1 [1]

3) P (2) → Q2 [1]

4) P (3) → Q2 Q1 [1]

5) P (n) → Q2 P (n− 2) [.25]

6) P (n) → Q4 P (n− 4) [.75]

An example initial derivation sequence might be

P (8) → Q4 P (4) → Q4 Q2 P (2) → Q4 Q2 Q2

This sequence of auxiliary symbols would then be refined,

using productions chosen probabilistically from the fol-

lowing set, where the probabilities have been derived em-

pirically by adjusting them based on generated melodies.

Such adjustments may also be done by the end user

for customization purposes. The remaining productions

follow:

1) Q4 → Q2 V 4 V 4 [0.52]

2) Q4 → V 8 N4 N4 N4 V 8 [0.01]

3) Q4 → V 4 Q2 V 4 [0.47]

4) Q2 → N2 [0.06]

5) Q2 → V 4 V 4 [0.6]

6) Q2 → V 8 N4 V 8 [0.12]

7) Q2 → H4. N8 [0.16]

8) Q2 → H4/3 H4/3 H4/3 [0.06]

9) Q1 → C4 [1]

10) V 4 → N4 [0.22]

11) V 4 → V 8 V 8 [0.72]

12) V 4 → H8/3 H8/3 H8/3 [0.05]

13) V 4 → H8/3 H8/3 A8/3 [0.01]

14) V 8 → N8 [0.99]

15) V 8 → H16 A16 [0.01]

16) N2 → C2 [1]

17) N4 → C4 [0.5]

18) N4 → L4 [0.2]

19) N4 → S4 [0.5]

20) N4 → A4 [0.01]

21) N4 → R4 [0.25]

22) N8 → C8 [0.4]

23) N8 → L8 [0.2]

24) N8 → S8 [0.4]

25) N8 → A8 [0.01]

26) N8 → R8 [0.1]

XII. SAMPLE MELODIC SEQUENCES

In this section, we demonstrate some of the sequences

that are generated by the preceding grammar over selected

chords. We show both the terminal sequence of symbols

as well as melodic sequences. Note that for a given

terminal sequence, there will generally be many distinct

melodic sequences. The user can explore the latter while

leaving the terminal sequence intact if desired.

The first example is over a single major chord, a C

major 9. A terminal sequence generated by the grammar

is:

A8 L8 S8 C8 H4. S8

which designates a sequence of tones as

approach, color, scale, helpful, scale

Fig. 2. Licks over CM9 in the pattern (A8 L8 S8 C8 H4. S8)

Fig. 3. Licks over C13b9 in the pattern (R8 S4 C8 S8 S8 L8 R8)

Fig. 2 shows three example generated licks over this

chord. Our textual chord notation, also used in other

aspects of our software for ease in user interaction, uses

M to abbreviate major, m to abbreviate minor, and the

symbols b and # to represent musical flats and sharps,

respectively.

The next example is also over a single dominant chord,

a C13b9. The generated terminal sequence is:

R8 S4 C8 S8 S8 L8 R8

However, the licks generated are quite different from

the previous due to the chord and scale tones being

interpreted over different types of chords. Fig. 3 shows

three generated licks. Here b9 (D flat) is a chord tone, #9

(D sharp) has been designated as a scale tone, and #11 (F

sharp) is a color tone. The melodic notation for the third

lick would be

r8 c + 4 db + 8 bb8 e8 f#8 r8

in our tool. The stave display and play-back can be

generated automatically from this notation.

Now let’s try a two-chord sequence typical of modern

jazz: a D minor 9 followed by a Db9#11, the latter rep-

resenting a “tritone substitution” in JMP. The generated

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

334

Fig. 4. Licks over Dm9 Db9#11 in the pattern (C8 C4 S8 C8 S8 R8)

Fig. 5. Licks over CM9 Eb9 AbM9 Db9#11

terminal sequence is:

C8 C4 S8 C4 S8 R8

Fig. 4 shows three generated licks corresponding to this

terminal sequence.

To show the capabilities of our approach in connecting

melodies, we present melodies generated for a four-

chord sequence, the famous “Tadd Dameron turnaround”,

giving three different generated sequences, with respective

melodic possibilities in Fig. 5.

Finally we show how an entire chorus can be generated

at one time by a single grammatic derivation, in this case

for the chord changes to John Coltrane’s Giant Steps, is

shown in Fig. 7. Solos of this type take about one second

to generate.

XIII. LICK GENERATOR CONTROL PANEL

Fig. 6 shows the lick generator control panel in Impro-

Visor. The terminal string generated by the grammar

appears in the upper left text area. It may be used to

generate an arbitrary number of melody sequences by

replacing the terminals with notes, or the user can press

a button to regenerate the terminal sequence. Although

it is possible for the user to customize many of the

parameters, and even adjust the grammar output to suit, in

typical operation, this panel is set automatically based on

Fig. 6. Lick Generator Control Panel

chord and scale parameters that are part of the standard

vocabulary specification. The casual user simply presses a

button in the main window to generate melodies, without

necessitating opening this panel. Other buttons in the

panel allow us to assign a grade to licks and save

them. The corpus of saved licks will be used to train a

computational filter, such as a neural network or support

vector machine, so that only licks satisfying subjective

standards of a user will pass. We intend to incorporate

such filtering into a future version of the tool.

XIV. IMPLEMENTATION

Impro-Visor is implemented entirely in Java, version

1.5. S-expression input and output for vocabulary el-

ements is handled using the Polya library [27] which

provides Lisp-like functionality [26] in Java. Some of the

musical representation aspects were constructed using a

modified version of jMusic [28]. GUI development was

done using NetBeans [29].

XV. EVALUATION

Currently evaluation is mostly subjective. As a moon-

lighting instructor of jazz improvisation, the first au-

thor assesses that the grammar-based approach generates

melodies that compare favorably with those played by

college-level jazz students of at least an intermediate

playing level, if not better. The reader is invited to listen to

examples played automatically on the website [1], which

include both human-composed and machine-composed

improvisations, and is encouraged to download Impro-

Visor and try it for him/herself. Because the grammar is

user-modifiable, there is plenty of opportunity to try to

modify the grammar to generate melodies to individual

taste.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

335

XVI. FUTURE WORK

We plan to explore further other types of terminals in

the grammar, such as one that specify particular forms

of scalar sequences, including, but not limited to, chro-

matic approach sequences and other common jazz idioms.

In addition to the generation of melodies, Impro-Visor

generates accompaniment in the form of percussion, bass

line, and chordal comping. All of these are specified

in a style language similar to the one used to express

melodic sequences. We intend to describe the algorithms

for generating accompaniment from style specifications in

a future paper.

Work is also in progress to construct critic filters for

licks based on machine learning. This would be done

by attaching grades to a large number of licks generated

by the lick generator, which are then saved as a training

corpus. Once trained, the filter can be imposed to improve

even further the quality of generated licks, rejecting ones

that are below a specified level and regenerating in such

a case. Another possible line of work envisioned is to

use machine learning to learn grammars from a corpus,

including possibly separate grammars for different player

styles.

XVII. CONCLUSION

We have described the use of probabilistic context-

free grammars for generating convincing jazz sequences.

Although the use of grammars has been suggested be

many others, we believe that the key idea that makes our

approach work well is the interpretation of the terminal

symbols as chord tones, color tones, approach tones,

etc. This provides the linkage between pitch classes and

chords without requiring the grammar to be too specific

as to pitches.

The original intended use of this approach is in an

instructive tool for suggesting melodic ideas to impro-

visers. An advantage of the grammar approach in this

context is that the user of a software tool based on

grammar can change the grammar to suit. For example,

a simple grammar can be used for beginners while a

more sophisticated grammar can be used for advanced

players and ones who are more technically accomplished.

Although not the original intent, our approach could also

be the basis of a real-time improvising companion, since

in its current state, our tool will generate entire choruses

in one second or less, but even with slower processing,

the processing could, in principle, be overlapped with

playback in a separate thread.

ACKNOWLEDGMENT

This work was supported by a Faculty Enhancement

grant from the Mellon Foundation and by the National

Science Foundation REU Program under grant Award

No. 0451293 to Harvey Mudd College. We wish to

thank Stephen Jones, Martin Hunt, and Steve Gomez for

contributing to other aspects of our project that have help

amplify the usefulness of our work.

REFERENCES

[1] Impro-Visor, http://www.cs.hmc.edu/˜keller/jazz/improvisor.
[2] Robert Keller, Stephen Jones, David Morrison, Belinda Thom, and

Aaron Wolin, “A computational framework enhancing jazz cre-
ativity”, CDROM Proceedings, Third Workshop on Computational
Creativity, ECAI 2006, Riva del Garda, Italy.

[3] Terry Winograd, “Linguistics and computer analysis of tonal
harmony”, Journal of Music Theory, volume 12, pp. 2-49, 1968.

[4] B. Lindblom and J. Sundberg, “Towards a generative theory of
melody”, Swedish Journal of Musicology, volume 52, pp. 77-88,
1970.

[5] H.C. Longuet-Higgins, “The Grammar of Music”, Interdisci-
plinary Science Reviews, volume 3, no. 2, pp 128-156, 1978
(reprinted in Longuet-Higgins, Mental Processes, MIT Press,
1987).

[6] Curtis Roads, “Grammars as Representations for Music”, Com-
puter Music Journal, volume 3, no. 1, 1979, pp. 48-55.

[7] Gary M. Rader, “A Method for Composing Simple Traditional
Music by Computer”, Comm. ACM, volume 17, no. 11, pp. 631-
638.

[8] David W. Hughes, “Grammars of Non-Western Musics: A Selec-
tive Survey”, in Peter Howell, et al., ed., Representing Musical
Structure, pp 327-362, Academic Press, 1991.

[9] Bernard Bel and Jim Kippen, “Modelling music with grammars:
formal language representation in the Bol Processor”, in Alan
Marsden and Anthony Pople eds., Computer Representations and
Models in Music, pp 207-238, Academic Press, 1992.

[10] Curtis Roads and John Strawn, eds., Foundations of Computer
Music, MIT Press, 1985.

[11] David Cope, Computers and Musical Style”, A-R Editions, Inc.,
Madison, WI, 1991.

[12] Jon McCormack, “Grammar-Based Music Composition”, Com-
plexity International, volume 3, (http://www.complexity.org.au/
ci/vol03/mccorm/mccorm.html), 1996.

[13] Grard Assayag and Shlomo Dubnov, “Using Factor Oracles for
Machine Improvisation”, Soft Computing, volume 8, no. 9, pp 604-
610, 2004.

[14] F. Lerdahl amd R. Jackendof, A Generative Theory of Tonal Music,
MIT Press, Cambridge, Mass., 1983.

[15] Damon Horowitz., “Representing Musical Knowledge in a Jazz
Improvisation System”, In Proceedings of Artificial Intelligence
and Music, IJCAI workshop, pp 16-23, August, 1995.

[16] M.J. Steedman,“A generative grammar for jazz chord sequences”,
Music Perception, voume 2, no. 1, pp. 52–77, 1984.

[17] P.N. Johnson-Laird, “How Jazz Musicians Improvise”, Music
Perception, volume 19, no. 3, pp 415-442, 2002.

[18] P.N. Johnson-Laird, “Jazz Improvisation: A Theory at the Compu-
tational Level”, in Peter Howell, et al., eds., Representing Musical
Structure, Academic Press, 1991.

[19] David Temperley, Music and Probability, MIT Press, Cambridge,
Mass., 2007.

[20] John Wade Ulrich, “The analysis and synthesis of jazz by com-
puter”, Proceedings 5th IJCAI, pp 865-872, 1977.

[21] Maarten Grachten, “JIG: Jazz Improvisation Generator”, Workshop
on Current Research Directions in Computer Music, pp 1-6,
Audiovisual Institute-UPF, 2001.

[22] J. A. Biles, “GenJam: a genetic algorithm for generating jazz
solos”, Proceedings of the 1994 International Computer Music
Conference, Aarhus, Denmark, pp. 131–137.

[23] George Papadopoulos and Geraint Wiggins, “A genetic algorithm
for the generation of jazz melodies”, Proceedings of STeP 98,
Jyvskyl, Finland, 1998.

[24] Belinda Thom, “BoB: an interactive improvisational music com-
panion”, Proceedings of the Fourth International Conference on
Autonomous Agents, ACM Press, Barcelona, Catalonia, Spain, pp.
309–316, 2000.

[25] PG Music, Band in a Box, http://www.band-in-a-box.com.
[26] John McCarthy, “Recursive functions of symbolic expressions and

their computation by machine”, Comm, ACM, volume 3, no. 1, pp
184-195, 1960.

[27] Robert Keller, Polya Java library, http://www.cs.hmc.edu/
keller/polya/.

[28] Andrew Sorensen and Andrew Brown, jMusic Java library,
http://jmusic.ci.qut.edu.au/.

[29] NetBeans, http://www.netbeans.org/.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

336

Fig. 7. Typical choruses generated on John Coltrane’s Giant Steps

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

337

